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Consider the case where two players divide a single homogeneous object and are willing to transfer 
money up to predetermined limits. Suppose Players One and Two place monetary values of 𝑎1 and 𝑎2 
on the object and are willing to spend up to 𝑐1 and 𝑐2. An allocation can be described by (𝑥1, 𝑥2, 𝑚1, 𝑚2) 
where 𝑥1 and 𝑥2 are the fractions of the object given to players 1 and 2, and 𝑚1 𝑎𝑛𝑑 𝑚2 are the amount 
of money transferred to players 1 and 2. For an allocation to be feasible, it must satisfy 

                                                        𝑥1 + 𝑥2 = 1 ,         1 ≥ 𝑥1 ≥ 0 , 1 ≥ 𝑥2 ≥ 0                         (1) 

                                                        𝑚1 + 𝑚2 = 0 ,          𝑚1 ≥ −𝑐1 , 𝑚2 ≥ −𝑐2                          (2) 

 

Constraint (1) requires that the entire good be distributed between both players with none receiving a 
negative portion of it. Constraint (2) requires that money be transferred between the players and that 
neither may spend more than their budget limit. 

We assume that Player One is the highest bidder and that each Player’s budget constraint is non-
negative. 

                                                        𝑎1 >  𝑎2 > 0                                                 (3) 

            𝑐1 ≥ 0 , 𝑐2 ≥ 0                               (4) 

By constraints (1) and (2), the set of feasible allocations  for a 2-player game with one object is a 2-
dimensional rectangle in 𝑅4, (𝑥1, 𝑥2, 𝑚1, 𝑚2), as shown in Figure 1. 

 

 



We assume that a player’s utility for an allocation is simple the monetary value of the object multiplied 
by the amount of object obtained plus the amount of money obtained. Hence, an allocation in utility 
space, (𝑢1, 𝑢2), comes directly from a linear transformation of the points in allocation space. A point 
(𝑥1, 𝑥2, 𝑚1, 𝑚2) in allocation space is transformed to (𝑎1𝑥1 + 𝑚1, 𝑎2𝑥2 + 𝑚2) in utility space.  

More generally, 

𝑢𝑖 = 𝑎𝑖𝑥𝑖 + 𝑚𝑖 

As shown, feasible allocations in Utility space are a 2-Dimensional object in 𝑅2. The four vertices below 
are the transformed vertices from Figure (1).  

 

 

For an allocation to be envy-free it must satisfy the feasibility constraints as well as the following 
inequalities. These inequalities amount to each player believing that, in their own perspective, the other 
Player is not receiving a greater utility value. Inequality (5) is Player Two’s normal utility value compared 
against Player One’s utility value, using Player Two’s evaluation of the good. The left hand side of 
Inequality (7), shown below, is Player One’s normal utility value while the right hand side is Player One’s  
utility of what Player Two obtained. 

𝑎2𝑥1 + 𝑚1 ≤ 𝑎2𝑥2 + 𝑚2                          (5) 

𝑎2𝑥1 + 𝑚1 ≤ 𝑎2(1 − 𝑥1) + (−𝑚1)                         by constraints (1) & (2) 

                                                          𝑥1 ≤ 1
2

− 𝑚1
𝑎2

                             (6) 
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                                                             𝑎1𝑥1 + 𝑚1 ≥ 𝑎1𝑥2 + 𝑚2                            (7) 

                                                             𝑎1𝑥1 + 𝑚1 ≥ 𝑎1(1 − 𝑥1) + (−𝑚1)                      by constraints (1) & (2) 

                               𝑥1 ≥ 1
2

− 𝑚1
𝑎1

                                                                                      (8) 

                                       

We will define particular limits on 𝑥1 𝑎𝑛𝑑 𝑥2 . To do so we will be adding Inequalities (5) and (7) : 

𝑎2𝑥1 + 𝑚1 ≤ 𝑎2𝑥2 + 𝑚2   + 
𝑎1𝑥2 + 𝑚2 ≤ 𝑎1𝑥1 + 𝑚1 

𝑎2𝑥1 + 𝑎1𝑥2 ≤  𝑎2𝑥2 + 𝑎1𝑥1 

                                                         𝑥1(𝑎1 − 𝑎2) ≥ 𝑥2(𝑎1 − 𝑎2)                 since  𝑎1 − 𝑎2 > 0 by constraint (3) 

𝑥1 ≥ 𝑥2 

𝑥1 + 𝑥1 ≥ 𝑥2 + 𝑥1 

2𝑥1 ≥ 1 

𝑥1 ≥ 1
2
       by equation (1),          (9) 

𝑥2 ≤ 1
2
                     by equation (1),        (10) 

  

Similarly for 𝑚1 𝑎𝑛𝑑 𝑚2. 

𝑥1 ≤ 1
2

− 𝑚1
𝑎2

       by inequality (6) 

𝑚1
𝑎2

≤ 1
2

− 𝑥1  

𝑚1
𝑎2

≤ 0                    by inequality  (9) 

𝑚1 ≤ 0               (11) 

𝑚2 ≥ 0                                by constraint (2),      (12) 

 

 

 

 



Geometrically, it is clear that if 𝑐1 ≥ 𝑎1
2

 the set of envy-free allocations are 

 

Lines (A) and (B) represent the two boundaries of inequalities (7) and (5), respectively.  From the graph, 

it is clear that the set of envy-free allocations is a convex set with vertices 𝑉1 = �1
2

, 1
2

 , 0, 0� , 𝑉2 =

 �1 , 0, − 𝑎1
2

, 𝑎1
2

� , 𝑎𝑛𝑑 𝑉3 =  �1 , 0, − 𝑎2
2

, 𝑎2
2

�.   

The  set of envy free allocations in utility space are shown below.  

 

The three vertices in the Figure above are transformations of  𝑉1 , 𝑉2 and 𝑉3.  



 

 

Claim 1.1: Suppose 𝑐1 ≥  𝑎1
2

. If (𝑥, 𝑚) is a convex combination of 𝑉1 , 𝑉2 and 𝑉3 as defined by the  

equations above, then (𝑥, 𝑚)is an envy-free allocation. 

 

Conversely we must show that if (𝑥, 𝑚) is a convex combination of 𝑉1, 𝑉2 , and 𝑉3, then (𝑥, 𝑚) is an 
envy free allocation. Suppose 𝛼1, 𝛼2, and 𝛼3  are nonnegative numbers satisfying 𝛼1 +  𝛼2 + 𝛼3 = 1 and 

(𝑥, 𝑚) = 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 

=  𝛼1 � 
1
2

 ,
1
2

 , 0 , 0 � + 𝛼2 � 1 , 0 , −
𝑎1

2
 ,

𝑎1

2
�  + 𝛼3 � 1 , 0, −

𝑎2

2
 ,

𝑎2

2
 � 

That is, 

𝑥1 =    1
2

𝛼1 + 𝛼2 + 𝛼3 

𝑥2 =
1
2

𝛼1 

𝑚1 =  − 𝑎1
2

(𝛼2) −  𝑎2
2

( 𝛼3) 

𝑚2 =  𝑎1
2

(𝛼2) + 𝑎2
2

( 𝛼3)  

In order for this allocation to be envy-free it must satisfy the two inequalities, (5) and (7). 

Inequality (7),  Player One  believes he received at least as much as Player Two, is equivalent to 

𝑎1 �
1
2

𝛼1 + 𝛼2 + 𝛼3� − �
𝛼2𝑎1 + 𝛼3𝑎2

2
� ≥

𝑎1𝛼1

2
+

𝛼2𝑎1 + 𝛼3𝑎2

2
 

𝛼1𝑎1 + 𝛼2𝑎1 + 𝛼3(2𝑎1 − 𝑎2)
2

≥
𝛼1𝑎1 + 𝛼2𝑎1 + 𝛼3𝑎2

2
 

𝛼3𝑎1 ≥  𝛼3𝑎2 

Since 𝛼3 ≥ 0  and 𝑎1 >  𝑎2  by inequality (3), the inequality above holds. 

Inequality (5),  Player Two believes he received at least as much as Player One, is equivalent to 

𝑎2 �
1
2

𝛼1 + 𝛼2 + 𝛼3� − �
𝛼2𝑎1 + 𝛼3𝑎2

2
� ≤

𝑎2𝛼1

2
+

𝛼2𝑎1 + 𝛼3𝑎2

2
 

𝛼2𝑎1 + 𝛼2(2𝑎2 − 𝑎1) + 𝛼3𝑎2

2
≤

𝛼1𝑎2 + 𝛼2𝑎1 + 𝛼3𝑎2

2
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𝛼2𝑎2 ≤  𝛼2𝑎1 

 

Since 𝛼2 ≥ 0 and  𝑎1 ≥  𝑎2, by inequality (3),  the inequality above holds. 

It is also necessary to show that (𝑥, 𝑚)  is feasible, satisfying equations (1) and (2). 

Equation (1), the entire good is allocated between the two players, is equivalent to  

1
2

𝛼1 + 𝛼2 + 𝛼3 +  1
2

𝛼1 = 1      by (definition of convex combination) 

By the definition of convex combinations this equality holds. 

Equation (2), the sum of the two players monetary transfers is 0, is equivalent to 

−
𝑎1

2
(𝛼2) −  

𝑎2

2
( 𝛼3) +

𝑎1

2
(𝛼2) +

𝑎2

2
( 𝛼3) = 0 

 

Thus, If (𝑥, 𝑚)  is a convex combination of 𝑉1 , 𝑉2, and 𝑉3 then (𝑥, 𝑚)   is envy free. 

Claim 1.2. Suppose 𝑐1 ≥  𝑎1
2

 . If (𝑥, 𝑚) is an envy-free allocation, then (𝑥, 𝑚) is a convex combination of 

𝑉1, 𝑉2 , and 𝑉3 as defined by equations above **.   

We verify that if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  
𝑉1, 𝑉2 , and 𝑉3. We show that there exist nonnegative 𝛼1, 𝛼2, and 𝛼3 that satisfy  𝛼1 + 𝛼2 + 𝛼3 = 1 and 
(𝑥, 𝑚) =   𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3. 

Let 

𝛼1 = 2𝑥2 

𝛼2 =
(𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1)

𝑎1 − 𝑎2
 

𝛼3 =
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)

𝑎1 − 𝑎2
 

We can easily show that each 𝛼𝑖 ≥ 0. From equation (1), 𝑥2 ≥ 0,  therefore 2𝑥2 ≥ 0 and so  𝛼1 ≥ 0. 
Since (𝑥, 𝑚) is envy-free, (𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1) ≥ 0 as shown by inequality (5). We also know  
𝑎1−𝑎2 > 0 from inequality(3).  Therefore 𝛼2 ≥ 0. Using the definition of envy-free from Inequality (7),  
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2) > 0. It has already been shown that 𝑎1−𝑎2 > 0. Hence, 𝛼3 ≥ 0. 

 

 

 



 

 

After some algebra and use of the feasibility conditions, we can verify that  

        𝛼1 + 𝛼2 + 𝛼3 = ⋯ 

       = 2𝑥2 + (𝑎2𝑥2+𝑚2)−(𝑎2𝑥1+𝑚1)
𝑎1−𝑎2

+ (𝑎1𝑥1+𝑚1)−(𝑎1𝑥2+𝑚2)
𝑎1−𝑎2

 

                                 =  2𝑥2 + (𝑎1−𝑎2)(𝑥1)−(𝑎1−𝑎2)(𝑥2)
𝑎1−𝑎2

 

     = 𝑥1 + 𝑥2  
     = 1                        by Equation  (1) 

 

Also, we must show that 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 = (𝑥, 𝑚) 

That is, 

2𝑥2 � 
1
2

 ,
1
2

 , 0 , 0 �  +
(𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1)

𝑎1 − 𝑎2
�1 , 0 , −

𝑎1

2
,
𝑎1

2
� +

(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)
𝑎1 − 𝑎2

�1 , 0 , −
𝑎2

2
,
𝑎2

2
� = (𝑥1, 𝑥2, 𝑚1, 𝑚2) 

 

The necessary calculations to verify the four component equations follow. 

1
2

(2𝑥2) +
(𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1)

𝑎1 − 𝑎2
+

(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)
𝑎1 − 𝑎2

= ⋯ 

         =  𝑥2 + (𝑎1−𝑎2)(𝑥1)−(𝑎1−𝑎2)(𝑥2)
𝑎1−𝑎2

 

        =  𝑥1 

1
2

(2𝑥2) = 𝑥2 

 

 
(𝑎2𝑥2+𝑚2)−(𝑎2𝑥1+𝑚1)

𝑎1−𝑎2
�−

𝑎1

2
� +

(𝑎1𝑥1+𝑚1)−(𝑎1𝑥2+𝑚2)
𝑎1−𝑎2

�−
𝑎2

2
� = ⋯ 

=
𝑚1(𝑎1 −  𝑎2) − 𝑚2(𝑎1 − 𝑎2)

2(𝑎1−𝑎2)  

=
2𝑚1(𝑎1 −  𝑎2)

2(𝑎1−𝑎2)   

= 𝑚1 



   

(𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1)
𝑎1 − 𝑎2

�
𝑎1

2 � +
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)

𝑎1 − 𝑎2
�

𝑎2

2 � = ⋯ 

 

=
𝑚2(𝑎1 −  𝑎2) − 𝑚1(𝑎1 − 𝑎2)

2(𝑎1−𝑎2)   

=
2𝑚2(𝑎1 −  𝑎2)

2(𝑎1−𝑎2)  

= 𝑚2 

So  𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 = (𝑥, 𝑚) = (𝑥1, 𝑥2, 𝑚1, 𝑚2). 

Thus if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  𝑉1, 𝑉2, and 𝑉3.  

 

Claim 1.3. Suppose 𝑐1 ≥  𝑎1
2

. The allocations 𝑉1, 𝑉2 and 𝑉3 as defined by equations (??) are vertices of 

the set of envy-free allocations. 

We now verify that 𝑉1, 𝑉2 and 𝑉3 are vertices of the envy free allocations. We will do so by showing 
that if the average of any two points in the set of envy free allocations equals this allocation then these 
two points are in fact the same, or, the allocation itself. 

Suppose (𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are envy free and 

1
2

(𝑥1, 𝑥2, 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1, 𝑛2) =  ( 
1
2

 ,
1
2

 , 0 , 0 ) 

That is, 

1
2

𝑥1 +
1
2

𝑦1 =
1
2

  

1
2

𝑥2 +
1
2

𝑦2 =
1
2

  

1
2

𝑚1 +
1
2

𝑛1 = 0  

1
2

𝑚2 +
1
2

𝑛2 = 0 

 



We know 𝑥1and 𝑦1 must be at least 1
2
 , by inequality (9), therefore for the first component equality to 

hold   𝑥1 =  𝑦1 = 1
2
 because if 𝑥1 > 1

2
 or 𝑦1 > 1

2
 it would be necessary for 𝑦1 < 1

2
 or 𝑥1 < 1

2
,  respectively, 

a contradiction. So from 𝑥1, 𝑦1 we know   𝑥2 =  𝑦2 = 1
2
  using equation (1) . Furthermore, 𝑚1 = 𝑛1 = 0 

since if  𝑚1 < 0 or 𝑛1 < 0   then for equation (2) to hold it would be necessary for 𝑛1 > 0 or 𝑚1 > 0, 
respectively, a contradiction by inequality (11). Finally,  𝑚2 = 𝑛2 = 0 using the corresponding values of 
𝑚1 and 𝑛1 and equation (2). Therefore ( 1

2
 , 1

2
 , 0 , 0 ) is a vertex since the points are identical. 

 

Suppose (𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are envy free and 

 

1
2

(𝑥1, 𝑥2, 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛, 𝑛2) =  ( 1 , 0 , −
𝑎1

2
 ,

𝑎1

2
) 

That is, 

1
2

𝑥1 +
1
2

𝑦1 = 1  

1
2

𝑥2 +
1
2

𝑦2 = 0  

1
2

𝑚1 +
1
2

𝑛1 = −
𝑎1

2
  

1
2

𝑚2 +
1
2

𝑛2 =
𝑎1

2
 

 

Starting with the first component equality if 𝑥1 < 1 or  𝑦1 < 1 it would require that if 𝑦1 > 1 or  𝑥1 > 1, 
respectively, a contradiction to constraint (1) . So  𝑥1 =  𝑦1 = 1 . Then,  𝑥2 =  𝑦2 = 0 using equation(1). 

Starting with inequality (8) , 𝑥1 ≥ 1
2

− 𝑚1
𝑎1

 , and substituting 𝑥1  = 1 we get  𝑚1 ≥ − 𝑎1
2

 and 𝑛1 ≥ − 𝑎1
2

. If 

𝑚1 > − 𝑎1
2

 or 𝑛1 >  − 𝑎1
2

  then for the third component equality to hold either 𝑛1 < − 𝑎1
2

  or  𝑚1 <

 − 𝑎1
2

 respectively. By this,  𝑚1 = 𝑛1 = − 𝑎1
2

. Finally,  𝑚2 = 𝑛2 = 𝑎1
2

 using the corresponding values of 

𝑚1 and 𝑛1 and using equation (2) .  Therefore ( 1 , 0 , − 𝑎1
2

 , 𝑎1
2

) is a vertex. 

 

Suppose(𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are envy free and 

1
2

(𝑥1 , 𝑥2, 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1, 𝑛2) =  ( 1 , 0, −
𝑎2

2
 ,

𝑎2

2
 ) 

That is, 



1
2

𝑥1 +
1
2

𝑦1 = 1  

1
2

𝑥2 +
1
2

𝑦2 = 0 

1
2

𝑚1 +
1
2

𝑛1 = −
𝑎2

2
   

1
2

𝑚2 +
1
2

𝑛2 =
𝑎2

2
 

Starting with the first equality, if 𝑥1 < 1 or  𝑦1 < 1 it would be necessary for either 𝑦1 > 1 or  𝑥1 > 1, 
respectively, a contradiction to constraint (1) . So  𝑥1 =  𝑦1 = 1. Then,  𝑥2 =  𝑦2 = 0 using equation(1). 
From inequality (6) and substituting 𝑥1 = 1 we get 𝑚1 ≤ − 𝑎2

2
  and 𝑛1 ≤ − 𝑎2

2
. In the third component 

equality if 𝑚1 < − 𝑎2
2

 or 𝑛1 <  − 𝑎2
2

 then it would require that  𝑚1 > − 𝑎2
2

 or 𝑛1 >  − 𝑎2
2

, respectively, a 

contradiction to inequality (6). Therefore 𝑚1 =  𝑛1 = − 𝑎2
2

. Finally,  𝑚2 = 𝑛2 = 𝑎1
2

 using the 

corresponding values of 𝑚1 and 𝑛1 and using equation (2). Hence � 1 , 0, − 𝑎2
2

 , 𝑎2
2

 � is a vertex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

If ,    𝑎1
2

> 𝑐1 > 𝑎2
2

, the set of envy free allocations forms a different shape set inside the rectangular set 

of feasible allocations. 

 

And the utility space is 
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The entire set of vertices in allocation space: 

Table 3  (𝑥1, 𝑥2, 𝑚1, 𝑚2) 
𝑉1 ( 

1
2 ,

1
2 , 0 , 0 ) 

𝑉2 ( 
1
2 +

𝑐1

𝑎1
 ,

1
2 −  

𝑐1

𝑎1
, −𝑐1, 𝑐1) 

𝑉3 ( 1 , 0 ,  −𝑐1 ,  𝑐1 ) 

𝑉4 ( 1 , 0, −
𝑎2

2  ,
𝑎2

2  ) 

 

 

 

Claim 2.1. Suppose 𝑎1
2

> 𝑐1 > 𝑎2
2

. If (𝑥, 𝑚)is a convex combination of 𝑉1, 𝑉2, 𝑉3, and 𝑉4   as defined by 

Table 3 above, then (𝑥, 𝑚)is an envy-free allocation. 

 

Therefore if (𝑥, 𝑚) is an envy free allocation it can be expressed as a convex combination of 
𝑉1, 𝑉2 , 𝑉3, 𝑉4 

We must show that if  (𝑥, 𝑚) is an allocation that is a convex combination of the vertices above then it 
must be envy-free.  

𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 + 𝛼4𝑉4 = ⋯  

= 𝛼1 � 
1
2

 ,
1
2

  , 0 , 0� + 𝛼2 � 
1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1, 𝑐1� + 𝛼3( 1 , 0 ,  −𝑐1 ,  𝑐1 ) + 𝛼4( 1 , 0, −

𝑎2
2  ,

𝑎2
2  ) 

So, 

𝑥1 =  
1
2

𝛼1 + � 
1
2

+
𝑐1

𝑎1
� 𝛼2 + 𝛼3 + 𝛼4 

𝑥2 =
1
2

𝛼1 + � 
1
2

−
𝑐1

𝑎1
� 𝛼2 

𝑚1 =   −𝑐1𝛼2 −𝑐1 𝛼3 −
𝑎2𝛼4

2  

𝑚2 =   𝑐1𝛼2+ 𝑐1 𝛼3 +
𝑎2𝛼4

2  

In order for this allocation to be envy-free it must satisfy the two inequalities, (5) and (7). 



Inequality (7),  Player One believes he received at least as much as Player Two, is equivalent to 

�
1
2 𝛼1 + � 

1
2 +

𝑐1

𝑎1
� 𝛼2 + 𝛼3 + 𝛼4� 𝑎1 + �−𝑐1𝛼2 −𝑐1 𝛼3 −

𝑎2𝛼4

2 � ≥ �
1
2 𝛼1 + � 

1
2 −

𝑐1

𝑎1
� 𝛼2� 𝑎1 + 𝑐1𝛼2+ 𝑐1 𝛼3 +

𝑎2𝛼4

2  

1
2

𝛼1𝑎1 +
1
2

𝛼2𝑎1 + (𝑎1 − 𝑐1)𝛼3 + (𝑎1 −
𝑎2
2 )𝛼4 ≥

1
2

𝛼1𝑎1 +
1
2

𝛼2𝑎1+ 𝑐1 𝛼3 +
𝑎2𝛼4

2
 

(𝑎1 − 2𝑐1)𝛼3 + (𝑎1 − 𝑎2)𝛼4 ≥ 0 

From Claim 2.1,  2𝑐1 < 𝑎1, and 𝑎1 − 𝑎2 > 0 by constraint (3). 

 

 

Inequality (5),  Player Two believes he received at least as much as Player One, is equivalent to 

�
1
2 𝛼1 + � 

1
2 +

𝑐1

𝑎1
� 𝛼2 + 𝛼3 + 𝛼4� 𝑎2 + �−𝑐1𝛼2 −𝑐1 𝛼3 −

𝑎2𝛼4

2 � ≤ �
1
2 𝛼1 + � 

1
2 −

𝑐1

𝑎1
� 𝛼2� 𝑎2 + 𝑐1𝛼2+ 𝑐1 𝛼3 +

𝑎2𝛼4

2  

 

1
2

𝛼1𝑎2 + �
1
2

𝑎2 +
𝑐1(𝑎2 − 𝑎1)

𝑎1
� 𝛼2 + (𝑎2 − 𝑐1)𝛼3 +

𝑎2𝛼4

2 ≤
1
2 𝛼1𝑎2 + �

1
2

𝑎2 +
𝑐1(𝑎1 − 𝑎2)

𝑎1
� 𝛼2+ 𝑐1 𝛼3 +

𝑎2𝛼4

2
 

 

0 ≤  (2𝑐1 − 𝑎2)𝛼3 +
2𝑐1(𝑎1 − 𝑎2)

𝑎1
 𝛼2 

 

Since 𝛼3 ≥ 0 and  𝛼2 ≥ 0 ,  2𝑐1 − 𝑎2 > 0 by Claim 2.1, and 𝑎1 − 𝑎2 > 0 by constraint (3), the inequality holds. 

Thus,  if (𝑥, 𝑚) is a convex combination of the vertices above then (𝑥, 𝑚)  will  be envy-free. 

Claim 2.2. Suppose 𝑎1
2

> 𝑐1 > 𝑎2
2

. If (𝑥, 𝑚) is an envy-free allocation, then (𝑥, 𝑚) is a convex 

combination of 𝑉1, 𝑉2, 𝑉3, and 𝑉4  as defined by Table 3.  [Note that your argument on page 15 for 
alpha_2 >= 0 is incorrect.   

We verify that if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  
𝑉1, 𝑉2, 𝑉3, and 𝑉4. We show that there exist nonnegative 𝛼1, 𝛼2, 𝛼3, and 𝛼4 that satisfy  𝛼1 + 𝛼2 +
𝛼3 + 𝛼4 = 1 and (𝑥, 𝑚) =   𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 + 𝛼4𝑉4 

 

 

In order to simplify this case we will look at two separate cases of the envy-free region.  



2𝑐1𝑥1 + 𝑚1 ≤ 𝑐1 and 2𝑐1𝑥1 + 𝑚1 ≥ 𝑐1 

Graphically the two spaces are represented by the two regions, A and B. 

 

 

Case (A): 𝟐𝒄𝟏𝒙𝟏 + 𝒎𝟏 ≤ 𝒄𝟏 

  (𝑥1, 𝑥2, 𝑚1, 𝑚2) 

𝑉1 ( 
1
2

 ,
1
2

  , 0 , 0) 

𝑉2 ( 
1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1 , 𝑐1) 

𝑉3 ( 1 , 0 ,  −𝑐1 ,  𝑐1 ) 

 

Let 

𝛼1 =
𝑐1 + 𝑚1

𝑐1
 

𝛼2 =
𝑎1(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)

𝑐1(𝑎1 − 2𝑐1)
 

𝛼3 =
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)

𝑎1 − 2𝑐1
 

𝛼4 = 0 

 

 



 

 

From Inequality (2), 𝑚1 ≥ −𝑐1, we know 𝑐1 + 𝑚1 ≥ 0. So 𝛼1 ≥ 0. Using the constraints of this case,  
𝑎1
2

> 𝑐1 > 𝑎2
2

 , so 𝑐1(𝑎1 − 2𝑐1) ≥ 0 . In order for 𝑐1𝑥1 − 𝑐1𝑥2 − 𝑚1 ≥ 0 then 2𝑐1𝑥1 + 𝑚1 ≤ 𝑐1, which 

from the definition of Region A, holds. Therefore 𝛼2 ≥ 0.  (𝑎1𝑥1 + 𝑚1) −  (𝑎1𝑥2 + 𝑚2) ≥ 0   follows 
from Inequality (7) and envy free thus 𝛼3 ≥ 0. 

𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = ⋯ 

                                    =
𝑐1 + 𝑚1

𝑐1
+

𝑎1(𝑐1𝑥1 − 𝑐1𝑥2 − 𝑚1)
𝑐1(𝑎1 − 2𝑐1)

+
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)

𝑎1 − 2𝑐1
 

                                    =
𝑐1 + 𝑚1

𝑐1
+

−𝑎1𝑐1𝑥1 + 𝑎1𝑐1𝑥2 + 𝑎1𝑐1𝑥1 − 𝑎1𝑐1𝑥2 − (𝑎1−2𝑐1)(𝑚1)
𝑐1(𝑎1 − 2𝑐1)

 

                                    =
𝑐1 + 𝑚1

𝑐1
−

𝑚1

𝑐1
 

                                    = 1 

 

Also, we must show that 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 + 𝛼4𝑉4 = (𝑥, 𝑚) 

�
𝑐1 + 𝑚1

𝑐1
� ( 

1
2 ,

1
2 , 0 , 0 ) + �

𝑎1(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)
𝑐1(𝑎1 − 2𝑐1) � ( 

1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1, 𝑐1)

+ 
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)

𝑎1 − 2𝑐1
(1 , 0 ,  −𝑐1 ,  𝑐1 ) + (0) � 1 , 0, −

𝑎2
2  ,

𝑎2
2  � = (𝑥, 𝑚) 

The four components of this equation are as follows  

1
2 �

𝑐1 + 𝑚1

𝑐1
� + �

1
2

+
𝑐1

𝑎1
� �

𝑎1�𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1�
𝑐1�𝑎1 − 2𝑐1�

� +
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)

𝑎1 − 2𝑐1
= 

= �
𝑐1 + 𝑚1

2𝑐1
� +

𝑎1(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)
2𝑐1(𝑎1 − 2𝑐1) +

(𝑎1 − 𝑐1)𝑥1 − (𝑎1 − 𝑐1)𝑥2 − 𝑚1

𝑎1 − 2𝑐1
 

= �
𝑐1 + 𝑚1

2𝑐1
� +

(𝑎1 − 2𝑐1)𝑐1𝑥1 − (𝑎1 − 2𝑐1)𝑐1𝑥2 − (𝑎1 − 2𝑐1)𝑚1

2𝑐1(𝑎1 − 2𝑐1)
  

=
𝑐1 + 𝑐1�𝑥1 − (1 − 𝑥1)�

2𝑐1
 

=
2𝑐1𝑥1

2𝑐1
  



= 𝑥1 

 

1
2 �

𝑐1 + 𝑚1

𝑐1
� + �

1
2

−
𝑐1

𝑎1
� �

𝑎1�𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1�
𝑐1�𝑎1 − 2𝑐1�

� = 

= �
𝑐1 + 𝑚1

2𝑐1
� +

𝑥2𝑐1(𝑎1 − 2𝑐1) − 𝑐1𝑥1(𝑎1 − 2𝑐1) − (𝑎1 − 2𝑐1)𝑚1

2𝑐1(𝑎1 − 2𝑐1)  

=
𝑐1 + 𝑐1�𝑥2 − (1 − 𝑥2)�

2𝑐1
  

=
2𝑐1𝑥2

2𝑐1
  

= 𝑥2 

 

(𝑐1) �
𝑎1(𝑐1𝑥1 − 𝑐1𝑥2 + 𝑚1)

𝑐1(𝑎1 − 2𝑐1) � + (𝑐1)
(𝑎1𝑥2 + 𝑚2) − (𝑎1𝑥1 + 𝑚1)

𝑎1 − 2𝑐1
= 

=
(𝑎1𝑐1𝑥1 − 𝑎1𝑐1𝑥2 − 𝑎1𝑐1𝑥1 + 𝑎1𝑐1𝑥2 + (𝑎1 − 2𝑐1)𝑚1)

𝑎1 − 2𝑐1
  

= 𝑚1 

(𝑐1) �
𝑎1(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)

𝑐1(𝑎1 − 2𝑐1) � + (𝑐1)
(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)

𝑎1 − 2𝑐1
= 

=
(𝑎1𝑐1𝑥1 − 𝑎1𝑐1𝑥2 − 𝑎1𝑐1𝑥1 + 𝑎1𝑐1𝑥2 + (𝑎1 − 2𝑐1)𝑚2)

𝑎1 − 2𝑐1
 

= 𝑚2 

Indeed then 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 + 𝛼4𝑉4 = (𝑥, 𝑚) =  (𝑥1, 𝑥2, 𝑚1, 𝑚2) 

 

Case(B): 𝟐𝒄𝟏𝒙𝟏 + 𝒎𝟏 ≥ 𝒄𝟏 

Let 

𝛼1 = 2𝑥2 
𝛼2 = 0 

𝛼3 =
(𝑎2𝑥1 + 𝑚1) − (𝑎2𝑥2 + 𝑚2)

𝑎2 − 2𝑐1
 



𝛼4 =
2(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)

𝑎2−2𝑐1
 

By Equation (1) 𝛼1 ≥ 0.  Since(𝑥, 𝑚) is an envy-free allocation (𝑎2𝑥1 + 𝑚1) − (𝑎2𝑥2 + 𝑚2) ≤ 0 
Inequality (5).  2𝑐1 > 𝑎2 by the stated constraint of this case,  𝑎1

2
> 𝑐1 > 𝑎2

2
.   . Therefore 𝛼3 ≥ 0. 

According to Inequalities (6) and (8),  𝑥1 ≤  𝑥2 − 𝑚1
𝑐1

  because 𝑥2 ≤ 1
2
 by Inequality (1.0) and 𝑎2 > 𝑐1 <

 𝑎1 and so   𝛼4 ≥ 0.  
 

Using algebra, we can verify that  

𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = ⋯ 

=  2𝑥2 +
(𝑎2𝑥1 + 𝑚1) − (𝑎2𝑥2 + 𝑚2)

𝑎2 − 2𝑐1
+

2(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)
𝑎2 − 2𝑐1

 

                                      =   2𝑥2 +
(𝑎2 − 2𝑐1)(𝑥1)) − (𝑎2 − 2𝑐1)(𝑥2)

𝑎2 − 2𝑐1
 

                       =  𝑥1 + 𝑥2 

                                     = 1                       by Equation (1) 

 

 

 

Also, we must show that 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 + 𝛼4𝑉4 = (𝑥, 𝑚) 

2𝑥2( 
1
2 ,

1
2 , 0 , 0 ) + ( 0)( 

1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1, 𝑐1) +  

(𝑎2𝑥1 + 𝑚1) − (𝑎2𝑥2 + 𝑚2)
𝑎2 − 2𝑐1

( 1 , 0 ,  −𝑐1 ,  𝑐1 )

+
2(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)

𝑎2−2𝑐1
� 1 , 0, −

𝑎2
2  ,

𝑎2
2  � = (𝑥, 𝑚) 

 

Breaking this down into four equality components we get  

1
2

(2𝑥2) +
(𝑎2𝑥1 + 𝑚1) − (𝑎2𝑥2 + 𝑚2)

𝑎2 − 2𝑐1
+

2(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)
𝑎2−2𝑐1

= ⋯ 

         =  𝑥2 + (𝑎2−2𝑐1)(𝑥1))−(𝑎2−2𝑐1)(𝑥2)
𝑎2−2𝑐1

 

        =  𝑥1                     from the computation of 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 

 



1
2

(2𝑥2) = 𝑥2 

 

 
(𝑎2𝑥1+𝑚1)−(𝑎2𝑥2+𝑚2)

𝑎2−2𝑐1
(−𝑐1) + 2(𝑐1𝑥2−𝑐1𝑥1−𝑚1)

𝑎2−2𝑐1
�− 𝑎2

2
� = ⋯ 

 =
𝑐1𝑚2 − 𝑐1𝑚1 + 𝑎2𝑚1

𝑎2−2𝑐1
 

= 𝑎2−2𝑐1
𝑎2−2𝑐1

(𝑚1)               by Equation(2) 

= 𝑚1 

    

(𝑎2𝑥1 + 𝑚1) − (𝑎2𝑥2 + 𝑚2)
𝑎2 − 2𝑐1

(𝑐1) +
2(𝑐1𝑥2 − 𝑐1𝑥1 − 𝑚1)

𝑎2−2𝑐1
�

𝑎2

2
� = ⋯ 

=
−𝑐1𝑚2 + 𝑐1𝑚1 − 𝑎2𝑚1

𝑎2−2𝑐1
 

= 𝑎2−2𝑐1
𝑎2−2𝑐1

(𝑚2)                      by Equation(2) 

= 𝑚2 

Indeed then  𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 = (𝑥, 𝑚) = (𝑥1, 𝑥2, 𝑚1, 𝑚2). 

 

Claim 2.3. Suppose 𝑎1
2

> 𝑐1 > 𝑎2
2

. The allocations 𝑉1, 𝑉2, 𝑉3, and 𝑉4 as defined by Table 3 are vertices 

of the set of envy-free allocations. 

We now verify that 𝑉1, 𝑉2, 𝑉3and 𝑉4 are vertices of the envy free allocations. We will do so by showing 
that if the average of any two points in the set of envy free allocations equals this allocation then these 
two points are in fact the same, or, the allocation itself. 

 ( 
1
2

 ,
1
2

  , 0 , 0) 

As shown in the previous case we know that this is a vertex of the set. 

 

Suppose (𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are envy free and 

 



1
2

(𝑥1, 𝑥2 , 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1 , 𝑛2) =  ( 
1
2 +

𝑐1
𝑎1

 ,
1
2 −  

𝑐1
𝑎1

, −𝑐1, 𝑐1) 

That is, 

1
2

𝑥1 +
1
2

𝑦1 =
1
2 +

𝑐1
𝑎1

  

1
2

𝑥2 +
1
2

𝑦2 =  
1
2 −  

𝑐1
𝑎1

 

1
2

𝑚1 +
1
2

𝑧1 = −𝑐1   

1
2

𝑚2 +
1
2

𝑧2 = 𝑐1 

 

Let’s assume that  𝑚1 =  −𝑐1
𝑞

  where  𝑞 > 1 . Solving the third equality we then,𝑛1 =  −2𝑐1 + 𝑐1
𝑞 ≤ −𝑐1  

Therefore, if 𝑚1 does not equal −𝑐1 then Equation (2) is violated. Hence, 𝑚1 =  𝑛1 = −𝑐1 . 
Subsequently by Equation (2), 𝑚2 = 𝑛2 = 𝑐1. Knowing this, we could instead write the first 
equality as  1

2
𝑥1 + 1

2
𝑦1 = 1

2 − 𝑚1
𝑎1

 . Indeed,  if 𝑥1 > 1
2 − 𝑚1

𝑎1
 or 𝑦1 > 1

2 − 𝑚1
𝑎1

 then it would be necessary for 

either 𝑦1 < 1
2 − 𝑚1

𝑎1
 or  𝑥1 < 1

2 − 𝑚1
𝑎1

  respectively which violates Inequality (8). Therefore, 𝑥1 = 𝑦1 =
1
2 + 𝑐1

𝑎1
. Which results in ,  𝑥2 =  𝑦2 = 1 − �1

2 + 𝑐1
𝑎1

� =  1
2 −  𝑐1

𝑎1
 from Equation(1). Following from 

these results  � 1
2

+ 𝑐1
𝑎1

 , 1
2

−  𝑐1
𝑎1

, −𝑐1, 𝑐1� must be a vertex. 

Suppose (𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are envy free and 

1
2

(𝑥1, 𝑥2, 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1, 𝑛2) =  ( 1 , 0 ,  −𝑐1 ,  𝑐1 ) 

That is  

1
2

𝑥1 +
1
2

𝑦1 = 1 

1
2

𝑥2 +
1
2

𝑦2 =  0 

1
2

𝑚1 +
1
2

𝑧1 = −𝑐1   

1
2

𝑚2 +
1
2

𝑧2 = 𝑐1 



We know from Equation (1) that neither 𝑥2 𝑜𝑟 𝑦2 can be less than 0. Therefore for the second equality 
to hold, 𝑥2 =  𝑦2 = 0 otherwise it would be impossible for their sum to equal 0. Following from that 
then, 𝑥1 =  𝑦1 = 1 by Equation (1). Using the same argument above in the previous vertex we know 

that if  1
2

𝑚1 + 1
2

𝑧1 = −𝑐1  then 𝑚1 =  𝑧1 =  −𝑐1. By Equation(2) then,  𝑚2 =  𝑧2 =  𝑐1. 

( 1 , 0 ,  −𝑐1 ,  𝑐1 ) is a vertex. 

                              

( 1 , 0, −
𝑎2

2  ,
𝑎2

2  ) 

This is a vertex as shown in the first case. 

 

3.1:`````````````````````````````````````````````````````````` 

The final scenario for this proof is where  0 ≤ 𝑐1 ≤ 𝑎2
2

. 

The graphical representation of the allocation space is shown below. 

 

Utility space is 



 

 

Table 4 (𝑥1, 𝑥2, 𝑚1, 𝑚2) 
𝑉1 ( 

1
2

 ,
1
2

, 0 , 0  ) 

𝑉2 ( 
1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1 , 𝑐1) 

𝑉3 ( 
1
2

+
𝑐1

𝑎2
 ,

1
2

−  
𝑐1

𝑎2
, −𝑐1 , 𝑐1) 

 

 

Claim 3.1: Suppose 0 ≤ 𝑐1 ≤ 𝑎2
2

. If (𝑥, 𝑚) is a convex combination of 𝑉1 , 𝑉2, and 𝑉3 as defined by  

Table 4, then (𝑥, 𝑚) is an envy-free allocation. 

We must verify that if (𝑥, 𝑚) is a convex combination of 𝑉1, 𝑉2 , and 𝑉3, then (𝑥, 𝑚) is an envy free 
allocation. Suppose 𝛼1, 𝛼2, and 𝛼3  are nonnegative numbers satisfying 𝛼1 + 𝛼2 + 𝛼3 = 1 and 

That is, 

(𝑥, 𝑚) = 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 

 

= 𝛼1 � 
1
2

 ,
1
2

, 0 , 0  � +  𝛼2 � 
1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1 , 𝑐1� + 𝛼3 � 

1
2

+
𝑐1

𝑎2
 ,

1
2

−  
𝑐1

𝑎2
, −𝑐1 , 𝑐1� 

 



𝑥1 =  
1
2

𝛼1 + �
1
2

+
𝑐1

𝑎1
 � 𝛼2 + � 

1
2

+
𝑐1

𝑎2
 � 𝛼3 

𝑥2 =   
1
2

𝛼1 + �
1
2

−
𝑐1

𝑎1
 � 𝛼2 + � 

1
2

−
𝑐1

𝑎2
 � 𝛼3 

𝑚1 =   −𝑐1𝛼2 −𝑐1𝛼3 

𝑚2 =   𝑐1𝛼2 +𝑐1𝛼3 

 

This allocation must satisfy the Inequalities (5) and (7) below. 

�
1
2 𝛼1 + �

1
2 +

𝑐1

𝑎1
 � 𝛼2 + � 

1
2 +

𝑐1

𝑎2
 � 𝛼3� 𝑎1 + (−𝑐1𝛼2 −𝑐1𝛼3) ≥ �

1
2 𝛼1 + �

1
2 −

𝑐1

𝑎1
 � 𝛼2 + � 

1
2 −

𝑐1

𝑎2
 � 𝛼3� 𝑎1 + 𝑐1𝛼2 +𝑐1𝛼3  

1
2 𝛼1𝑎1 +

1
2 𝛼2𝑎1 + �

1

2
𝑎1 +

𝑐1(𝑎1 − 𝑎2)
𝑎2

� 𝛼3 ≥
1

2
𝛼1𝑎1 +

1
2 𝛼2𝑎1 + �

1

2
𝑎1 +

𝑐1(𝑎2 − 𝑎1)
𝑎2

� 𝛼3  

Following from Inequality (3) , 𝑎1 − 𝑎2 ≥  𝑎2 − 𝑎1. So this first inequality holds. 

�
1
2 𝛼1 + �

1
2 +

𝑐1

𝑎1
 � 𝛼2 + � 

1
2 +

𝑐1

𝑎2
 � 𝛼3� 𝑎2 + (−𝑐1𝛼2 −𝑐1𝛼3) ≤ �

1
2 𝛼1 + �

1
2 −

𝑐1

𝑎1
 � 𝛼2 + � 

1
2 −

𝑐1

𝑎2
 � 𝛼3� 𝑎2 + 𝑐1𝛼2 +𝑐1𝛼3  

1
2 𝛼1𝑎2 + �

1
2 𝑎2 +

𝑐1(𝑎2 − 𝑎1)
𝑎1

� 𝛼2 +  
1

2
𝛼3𝑎2 ≤

1
2 𝛼1𝑎2 + �

1
2 𝑎2 +

𝑐1(𝑎1 − 𝑎2)
𝑎1

� 𝛼2 +  
1

2
𝛼3𝑎2  

 𝑎2 − 𝑎1 ≤  𝑎1 − 𝑎2  follows from Inequality (3) so the second inequality holds. 

Hence, if (𝑥, 𝑚) is a convex combination of 𝑉1, 𝑉2, and 𝑉3 then it itself is an envy-free allocation. 

 

 

Claim 3.2: Suppose 0 ≤ 𝑐1 ≤ 𝑎2
2

. If (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination 

of 𝑉1, 𝑉2, and 𝑉3 as defined by  Table 4. 

We verify that if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  
𝑉1, 𝑉2 , and 𝑉3. We show that there exist nonnegative 𝛼1, 𝛼2, and 𝛼3 that satisfy  𝛼1 + 𝛼2 + 𝛼3 = 1 and 
(𝑥, 𝑚) =   𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3. 

Let  

𝛼1 =
𝑐1 + 𝑚1

𝑐1
 



 𝛼2 =
𝑎1((𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1))

2𝑐1(𝑎1 − 𝑎2)
 

𝛼3 =
𝑎2((𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2))

2𝑐1(𝑎1 − 𝑎2)
 

𝛼1 ≥  0 as from Inequality (2), 𝑚1 ≥  −𝑐1.  (𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1) ≥ 0, by Inequality (5) and the 
definition of envy free. 𝑎1 − 𝑎2 ≥ 0, Inequality (3). Therefore 𝛼2 ≥ 0. Indeed (𝑎1𝑥1 + 𝑚1) −
(𝑎1𝑥2 + 𝑚2) ≥ 0 as (𝑥, 𝑚)  is envy free and specifically Inequality (7) and so 𝛼3 ≥ 0. 

 

Using algebra, we can verify that  

𝛼1 + 𝛼2 + 𝛼3+= ⋯ 

=  
𝑐1 + 𝑚1

𝑐1
+

1
2

∗
𝑎1�(𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1)�

𝑐1(𝑎1 − 𝑎2) +
1
2

∗
𝑎2((𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2))

𝑐1(𝑎1 − 𝑎2)
 

=
𝑐1 + 𝑚1

𝑐1
+

1
2

(
−2(𝑎1 − 𝑎2)𝑚1

𝑐1(𝑎1 − 𝑎2)
) 

=
𝑐1 + 𝑚1

𝑐1
−

𝑚1

𝑐1
 

= 1 

 

What is left to show is that 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 = (𝑥, 𝑚) 

𝑐1 + 𝑚1

𝑐1
� 

1
2

 ,
1
2

, 0 , 0  � +
𝑎1((𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1))

2𝑐1(𝑎1 − 𝑎2)
� 

1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1 , 𝑐1�

+
𝑎2�(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)�

2𝑐1(𝑎1 − 𝑎2) � 
1
2

+
𝑐1

𝑎2
 ,

1
2

−  
𝑐1

𝑎2
, −𝑐1 , 𝑐1� = ⋯ 

In order for this to be true we must determine the four components of this equation 

𝑐1 + 𝑚1

2𝑐1
+ �

1
2

+
𝑐1

𝑎1
�

𝑎1((𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1))
2𝑐1(𝑎1 − 𝑎2)

+ �
1
2

+
𝑐1

𝑎2
�

𝑎2�(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)�
2𝑐1(𝑎1 − 𝑎2) = 

=
𝑐1 + 𝑚1

2𝑐1
+

(𝑎1 − 𝑎2)𝑥1 − (𝑎1 − 𝑎2)(1 − 𝑥1) − (𝑎1 − 𝑎2)𝑚1

2𝑐1(𝑎1 − 𝑎2)  

=
𝑐1 + 𝑚1

2𝑐1
+

2𝑐1𝑥1 − 𝑚1 + 𝑐1

2𝑐1
 

= 𝑥1 



 

𝑐1 + 𝑚1

2𝑐1
+ �

1
2

−
𝑐1

𝑎1
�

𝑎1((𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1))
2𝑐1(𝑎1 − 𝑎2)

+ �
1
2

−
𝑐1

𝑎2
�

𝑎2�(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)�
2𝑐1(𝑎1 − 𝑎2) = 

=
𝑐1 + 𝑚1

2𝑐1
+

(𝑎1 − 𝑎2)𝑥2 − (𝑎1 − 𝑎2)(1 − 𝑥2) − (𝑎1 − 𝑎2)𝑚1

2𝑐1(𝑎1 − 𝑎2)  

=
𝑐1 + 𝑚1

2𝑐1
+

2𝑐1𝑥2 − 𝑚1 + 𝑐1

2𝑐1
 

= 𝑥2 

 

 

(𝑐1)
𝑎1�(𝑎2𝑥1 + 𝑚1) − (𝑎2𝑥2 + 𝑚2)�

2𝑐1(𝑎1 − 𝑎2) + (𝑐1)
𝑎2�(𝑎1𝑥2 + 𝑚2) − (𝑎1𝑥1 + 𝑚1)�

2𝑐1(𝑎1 − 𝑎2) = 

=
2𝑎1𝑐1𝑚1 − 2𝑎2𝑐1𝑚1

2𝑐1(𝑎1 − 𝑎2)  

= 𝑚1 

 

(𝑐1)
𝑎1((𝑎2𝑥2 + 𝑚2) − (𝑎2𝑥1 + 𝑚1))

2𝑐1(𝑎1 − 𝑎2)
+ (𝑐1)

𝑎2�(𝑎1𝑥1 + 𝑚1) − (𝑎1𝑥2 + 𝑚2)�
2𝑐1(𝑎1 − 𝑎2)  

==
2𝑎1𝑐1𝑚2 − 2𝑎2𝑐1𝑚2

2𝑐1(𝑎1 − 𝑎2)  

= 𝑚2 

Indeed then 𝛼1𝑉1 + 𝛼2𝑉2 + 𝛼3𝑉3 = (𝑥, 𝑚) =  (𝑥1, 𝑥2, 𝑚1, 𝑚2) 

So if (𝑥, 𝑚) is an envy free allocation it can be expressed as a convex combination of 𝑉1 , 𝑉2, 𝑉3 

 

 

Claim 3.3: Suppose 0 ≤ 𝑐1 ≤ 𝑎2
2

. The allocations 𝑉1 , 𝑉2, and 𝑉3 as defined by  Table 4 are vertices of the 

set of envy-free allocations. 

 



� 
1
2

 ,
1
2

, 0 , 0  �  , ( 
1
2

+
𝑐1

𝑎1
 ,

1
2

−  
𝑐1

𝑎1
, −𝑐1 , 𝑐1) 

These two points have already been shown to be vertices . 

 

1
2

(𝑥1, 𝑥2 , 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1 , 𝑛2) =  ( 
1
2

+
𝑐1

𝑎2
 ,

1
2

−  
𝑐1

𝑎2
, −𝑐1 , 𝑐1 

1
2

𝑥1 +
1
2

𝑦1 =
1
2 +

𝑐1
𝑎2

  

1
2

𝑥2 +
1
2

𝑦2 =  
1
2 −  

𝑐1
𝑎2

 

1
2

𝑚1 +
1
2

𝑛1 = −𝑐1   

1
2

𝑚2 +
1
2

𝑛2 = 𝑐1 

( 
1
2

+
𝑐1

𝑎2
 ,

1
2

−  
𝑐1

𝑎2
, −𝑐1 , 𝑐1) 

 

Let’s assume that 𝑚1 ≥ −𝑐1
𝑞

   where > 1 . Solving the third equality we get that 𝑛1 =  −2𝑐1 + 𝑐1
𝑞  where 

𝑛1 ≤  −𝑐1 . Therefore, if 𝑚1 does not equal −𝑐1 Inequality (2) is violated. Hence 𝑚1 =  𝑛1 = −𝑐1 . 
Subsequently by Equation (2), 𝑚2 = 𝑛2 = 𝑐1. Knowing this, we could instead write the first 
equation as  1

2
𝑥1 + 1

2
𝑦1 = 1

2 − 𝑚1
𝑎2

 . From Inequality (6) , 𝑥1 ≤ 1
2

− 𝑚1
𝑎2

, therefore  if 𝑥1 <  1
2 − 𝑚1

𝑎2
 or 

𝑦1 <  1
2 − 𝑚1

𝑎2
 it would require that 𝑦1 >  1

2 − 𝑚1
𝑎2

 or 𝑥1 >  1
2 − 𝑚1

𝑎2
 respectively which is a violation of 

the Inequality. Therefore, 𝑥1 = 𝑦1 = 1
2 + 𝑐1

𝑎1
. From Equation (1) then, 𝑥2 =  𝑦2 = 1 − �1

2 + 𝑐1
𝑎2

� =

 12 −  𝑐1
𝑎2

. Following from these results  � 1
2

+ 𝑐1
𝑎2

 , 1
2

−  𝑐1
𝑎2

, −𝑐1, 𝑐1� must be a vertex. 

 

 
As we have now fully characterized the set of envy-free allocations for any 2-player game with one 
homogeneous and divisible object we now will compare this set to the possible efficient allocations 
within the feasible set. 

For an allocation to be efficient certain constraints must be met. 

𝑥1 + 𝑥2 = 1 

2 
SubSection 2.2.2:  All Possible EnvyFree Allocations are Convex 
Combinations 



The unique property of efficiency is that if an allocation (𝑥, 𝑚) is efficient then there is no other feasible 
allocation, (𝑦, 𝑛),  which satisfies the following, 

𝑢1,𝑦 ≥ 𝑢1,𝑥  and 𝑢2,𝑦 ≥ 𝑢2,𝑥 

 

 SubSection 2.2.2:  All Possible EnvyFree Allocations are Convex 
Combinations 

 

 

The figure below is a representation of feasible and efficient solutions in Allocation space of a 2-Player 
game and 𝑐1 ≥  𝑎1  

 

 

Viewing this in utility space  



 

The three vertices, as we will analyze them in allocation space, are 𝑉1 = (1,0, 𝑐2, −𝑐2) , 𝑉2 =
(1,0, −𝑐1 , 𝑐1), and 𝑉3 = (0,1, −𝑐1, 𝑐1).  

 (𝑥1, 𝑥2, 𝑚1, 𝑚2) 
𝑉1 (1,0, 𝑐2, −𝑐2) 
𝑉2 (1,0, −𝑐1, 𝑐1) 
𝑉3 (0,1, −𝑐1, 𝑐1) 

 

As the set of efficient allocations are the boundary of the set of feasible allocations, in order to 
determine if an envy free allocation (𝑥, 𝑚) is a convex combination of these vertices then we must look 
at two cases. If (𝑥, 𝑚) is a convex combination of 𝑉1 and 𝑉2 or if (𝑥, 𝑚) is a convex combination of 𝑉2 
and 𝑉3. 

 

 

 

 

Claim 2.1a: If (𝑥, 𝑚) is a convex combination of 𝑉1 and 𝑉2 as defined by the  table in Section 2, then 
(𝑥, 𝑚)is an efficient allocation. 



We must verify that if (𝑥, 𝑚) is a convex combination of 𝑉1and 𝑉2, then (𝑥, 𝑚) is an efficient allocation. 
Suppose 𝛼1 and 𝛼2   are nonnegative numbers satisfying 𝛼1 +  𝛼2 + 𝛼3 = 1 and 

That is 

                 𝛼1𝑉1 + 𝛼2𝑉2 = ⋯ 

= 𝛼1(1, 0, 𝑐2, −𝑐2) + 𝛼2(1, 0, −𝑐1, 𝑐1)   

Let (𝑥1, 𝑥2, 𝑚1, 𝑚2) be the allocation that this is equal to. 

Therefore 

𝑥1 = 𝛼1 + 𝛼2 

      = 1 

𝑥2 = 0 

𝑚1 = 𝑐2𝛼1 − 𝑐1𝛼2 

𝑚2 = −𝑐2𝛼1 + 𝑐1𝛼2 

In order for (𝑥, 𝑚) to be efficient it must first satisfy that there is no other allocation such that 
𝑢𝑖,𝑦 >  𝑢𝑖,𝑥  for some player 𝑖  and 𝑢𝑖,𝑦 ≥  𝑢𝑖,𝑥  for the rest. 

Let (𝑦, 𝑛) be an allocation where 𝑢𝑖,𝑦 >  𝑢𝑖,𝑥  for some player 𝑖  and 𝑢𝑖,𝑦 ≥  𝑢𝑖,𝑥  for the rest.  

If 𝑢1,𝑦 > 𝑢1,𝑥  holds then it would require that Player One transfer ε of the good in return for more than 
𝑎1ε  monetarily. This is a contradiction as Player Two views his increase in utility from the good as  
𝑎2ε < 𝑎1ε     and thus it is impossible for him/her to transfer an amount of money such that 
𝑢1,𝑦 > 𝑢1,𝑥   while maintaining 𝑢2,𝑦 ≥ 𝑢2,𝑥 . 

Instead assume 𝑢2,𝑦 > 𝑢2,𝑥. Again, in this case the same argument can be made. As Player Two has 
none of the good it is necessary for Player One to transfer ε of the good in return for at least 𝑎1ε 
monetarily. The contradiction again is that 𝑎2ε < 𝑎1ε  so Player Two cannot transfer an amount to 
maintain Player One’s utility while increasing his/her own. 

 

It is also necessary to show that (𝑥, 𝑚) satisfies equations (1) and (2). 

𝑥1 + 𝑥2 = 1 

As defined above, 𝑥1 = 1 and 𝑥2 = 0 as well as 𝑥1 ≥ 0  and  𝑥2 ≥ 0,  thus the equality holds. 

𝑐2𝛼1 − 𝑐1𝛼2 + −𝑐2𝛼1 + 𝑐1𝛼2 = 0 

Again, through simple algebra it is clear that the first equality holds.  



𝑐2𝛼1

1 − 𝛼2
≥ −𝑐1 

From constraint (3) and the convex combination definiton we know  𝑐2𝛼1
1−𝛼2

≥ 0 and −𝑐1 ≤ 0 therefore 

𝑚1 ≥  −𝑐1 

𝑐1𝛼2

1 − 𝛼1
≥ −𝑐2 

From constraint (3) and the convex combination definiton we know  𝑐1𝛼2
1−𝛼1

≥ 0 and −𝑐1 ≤ 0 therefore 

𝑚2 ≥  −𝑐1. 

Thus, If (𝑥, 𝑚)  is a convex combination of 𝑉1 and 𝑉2 then (𝑥, 𝑚)   is envy free. 

 

Claim 2.1b: If (𝑥, 𝑚) is a convex combination of 𝑉2 and 𝑉3 as defined by the  table in Section 2, then 
(𝑥, 𝑚)is an efficient allocation. 

That is 

                 𝛼1𝑉2 + 𝛼2𝑉3 = ⋯ 

= 𝛼1(1,0, −𝑐1, 𝑐1) + 𝛼2(0,1, −𝑐1, 𝑐1)  

Let (𝑥1, 𝑥2, 𝑚1, 𝑚2) be the allocation that this is equal to. 

Therefore 

𝑥1 = 𝛼1   

𝑥2 = 𝛼2 

𝑚1 =  −𝑐1(𝛼1 + 𝛼2) 

= −𝑐1  

𝑚2 =  𝛼1𝑐1 + 𝛼2𝑐1 

= 𝑐1 

In every possible combination of 𝑉2 and 𝑉3 we know that Player One is at his budget constraint. 

We must also show constraint (1) and (2) are satisfied, that is the allocation is feasible.  

𝑥1 + 𝑥2 = 𝛼1 +  𝛼2  

           = 1        by  (definition of convex combination) 

𝑚1 + 𝑚2 =  −𝑐1 + 𝑐1 



= 0 

Thus, these two constraints are satisfied as well. 

Let  (𝑦, 𝑛) such that 𝑢𝑖,𝑦 > 𝑢𝑖,𝑥 for some player i and 𝑢𝑖,𝑦 ≥ 𝑢𝑖,𝑥  for all the other players. 

If 𝑢1,𝑦 > 𝑢1,𝑥  then Player Two must receive a portion of the good in return for monetary compensation. 
As stated above Player One is at his budget constraint in every case therefore this is a contradiction. 
Instead assume 𝑢2,𝑦 > 𝑢2,𝑥 . Player Two cannot receive any monetary compensation from Player One 
thus Player One must transfer some of the good in return for some monetary compensation from Player 
Two. As Player Two has only part of the good it is necessary for Player One to transfer ε of the good 
in return for at least 𝑎1ε monetarily. The contradiction again is that 𝑎2ε < 𝑎1ε  so Player Two 
cannot transfer an amount to maintain Player One’s utility while increasing his/her own. 

 

Claim 2.2.  If (𝑥, 𝑚) is an envy-free allocation, then (𝑥, 𝑚) is a convex combination of 𝑉1 and  𝑉2 as 
defined by table above.   

We verify that if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  𝑉1 and 𝑉2 . 
We show that there exist nonnegative 𝛼1 and 𝛼2 that satisfy  𝛼1 +  𝛼2 = 1 and (𝑥, 𝑚) =   𝛼1𝑉1 +
𝛼2𝑉2. 

Let 

𝛼1 =
𝑚1 + 𝑐1𝑥1

𝑐1 + 𝑐2
 

𝛼2 =
𝑐2𝑥1−𝑚1

𝑐1 + 𝑐2
 

As both 𝑉1 and 𝑉2 are allocations in which 𝑥1 = 1 any convex combination of these vertices will have 
𝑥1 = 1 as well .  In order for 𝑚1 + 𝑐1𝑥1 ≥ 0 it is necessary for 𝑥1 ≥  − 𝑚1

𝑐1
 . From constraint (2) we know 

0 ≤ − 𝑚1
𝑐1

 ≤ 1 therefore the inequality 𝑥1 ≥  − 𝑚1
𝑐1

 holds. 𝑐1 + 𝑐2 ≥ 0 by constraint (4). So 𝛼1 ≥ 0.   For 

𝛼2 ≥ 0 then  𝑥1 ≥ 𝑚1
𝑐2

 must hold. Since 𝑚1 ≤ 0, by constraint (2), and 𝑥1 ≥ 0 , by constraint (1), we 

know 𝑥1 ≥ 𝑚1
𝑐2

 holds. Therefore 𝛼2 ≥ 0. 

We need to verify that 𝛼1 + 𝛼2 = 1. 

That is 

                                                           𝛼1 + 𝛼2 = ⋯ 

=
𝑚1 + 𝑐1𝑥1

𝑐1 + 𝑐2
+

𝑐2𝑥1 − 𝑚1

𝑐1 + 𝑐2
 



=
𝑐1𝑥1 + 𝑐2𝑥1

𝑐1 + 𝑐2
 

                                                                                 = 𝑥1   

                                                                                  = 1                      by definition of convex combinations 
               

 

 

 

 

 

We must show that  𝛼1𝑉1 + 𝛼2𝑉2 = (𝑥, 𝑚) 

𝛼1𝑉1 + 𝛼2𝑉2 =  
𝑚1 + 𝑐1𝑥1

𝑐1 + 𝑐2
(1, 0, 𝑐2, −𝑐2) +

𝑐2𝑥1 − 𝑚1

𝑐1 + 𝑐2
(1,0, −𝑐1, 𝑐1) 

The four components of this equality are  

𝑥1 =  𝑚1+𝑐1𝑥1
𝑐1+𝑐2

+ 𝑐2𝑥1−𝑚1
𝑐1+𝑐2

= 1                by the computation of 𝛼1 + 𝛼2  

𝑥2 = 0 

𝑚1 =  
𝑐2𝑚1 + 𝑐1𝑐2𝑥1

𝑐1 + 𝑐2
+

𝑐1𝑚1 − 𝑐2𝑐1𝑥1

𝑐1 + 𝑐2
 

=
𝑐2𝑚1 + 𝑐1𝑚1

𝑐1 + 𝑐2
 

=  𝑚1 

𝑚2 =  
−𝑐2𝑚1 − 𝑐1𝑐2𝑥1

𝑐1 + 𝑐2
+

𝑐2𝑐1𝑥1 + 𝑐1𝑚1

𝑐1 + 𝑐2
 

=
−𝑐2𝑚1 − 𝑐1𝑚1

𝑐1 + 𝑐2
 

= −𝑚1 

Thus, 𝛼1𝑉1 + 𝛼2𝑉2 = (𝑥, 𝑚) = (1,0, 𝑚1, −𝑚1) 

So, if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  𝑉1 and 𝑉2.  



Claim 2.2b.  If (𝑥, 𝑚) is an envy-free allocation, then (𝑥, 𝑚) is a convex combination of 𝑉2 and  𝑉3 as 
defined by table above.   

We verify that if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  𝑉2 and 𝑉3 . 
We show that there exist nonnegative 𝛼1 and 𝛼2 that satisfy  𝛼1 +  𝛼2 = 1 and (𝑥, 𝑚) =   𝛼1𝑉2 +
𝛼2𝑉3. 

Let 

𝛼1 = 𝑥1 

𝛼2 = 𝑥2 

𝛼1 ≥ 0  and 𝛼2 ≥ 0 by constraint (1). 

 

 

We need to verify that 𝛼1 + 𝛼2 = 1. 

That is 

𝛼1 + 𝛼2 = 𝑥1 + 𝑥2 

             = 1       by equation (1) 

 

We must show that  𝛼1𝑉2 + 𝛼2𝑉3 = (𝑥, 𝑚) 

That is 

𝛼1𝑉2 + 𝛼2𝑉3 = 𝑥1(1,0, −𝑐1, 𝑐1) + 𝑥2(0,1, −𝑐1, 𝑐1) 

The four components of this equality are  

𝑥1 =  𝑥1 

𝑥2 =  𝑥2 

𝑚1 = −𝑐1𝑥1 − 𝑐1𝑥2 

                         =  −𝑐1                    by equation (1) 

𝑚2 = 𝑐1𝑥1 + 𝑐1𝑥2 

                                                                                     =  𝑐1       by equation (1) 

Therefore 𝛼1𝑉2 + 𝛼2𝑉3 = (𝑥, 𝑚) = (𝑥1 , 𝑥2, −𝑐1, 𝑐1) 



So, if (𝑥, 𝑚) is an envy free allocation, then (𝑥, 𝑚) is a convex combination of  𝑉2 and 𝑉3.  

Claim 2.3 : The allocations 𝑉1, 𝑉2, and 𝑉3 as defined by the table in Section 2 are vertices of the set of 
efficient allocations 

We now verify that 𝑉1, 𝑉2 and 𝑉3 are vertices of the efficient allocations. We will do so by showing that 
if the average of any two points in the set of envy free allocations equals this allocation then these two 
points are in fact the same, or, the allocation itself. 

Suppose(𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are efficient and 

1
2

(𝑥1, 𝑥2, 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1, 𝑛2) = (1,0, 𝑐2, −𝑐2 ) 

That is  

1
2

𝑥1 +
1
2

𝑦1 = 1 

1
2

𝑥2 +
1
2

𝑥2 = 0 

1
2

𝑚1 +
1
2

𝑛1 = 𝑐2 

1
2

𝑚2 +
1
2

𝑛2 = −𝑐2  

Starting with the first equality, if 𝑥1 < 1 or  𝑦1 < 1 then it would be necessary for either 𝑦1 > 1 or  
𝑥1 > 1, respectively, a contradiction to constraint (1). So  𝑥1 =  𝑦1 = 1.Then,  𝑥2 =  𝑦2 = 0 using 
equation(1). 

From the fourth equality, if 𝑚2 > −𝑐2 or  𝑛2 > −𝑐2 it would be necessary for either 𝑚2 < −𝑐2 or   
𝑛2 < −𝑐2, respectively, a contradiction to constraint (3). So,  𝑚2 =  𝑛2 = −𝑐2. Finally  𝑚1 =  𝑛1 = 𝑐2 
using equation (2) and the corresponding values of 𝑚2 and 𝑛2 .  

Therefore  𝑉1 is a vertex of the efficient set. 

Suppose (𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are efficient and 

1
2

(𝑥1, 𝑥2, 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1, 𝑛2) = (1,0, −𝑐1, 𝑐1 ) 

That is  

1
2

𝑥1 +
1
2

𝑦1 = 1 

1
2

𝑥2 +
1
2

𝑥2 = 0 



1
2

𝑚1 +
1
2

𝑛1 = −𝑐1 

1
2

𝑚2 +
1
2

𝑛2 = 𝑐1 

Starting with the first equality, if 𝑥1 < 1 or  𝑦1 < 1 then it would be necessary for either 𝑦1 > 1 or  
𝑥1 > 1, respectively, a contradiction to constraint (1). So  𝑥1 =  𝑦1 = 1.Then,  𝑥2 =  𝑦2 = 0 using 
equation(1). From the third equality, if 𝑚1 > −𝑐1 or  𝑛1 > −𝑐1 it would be necessary for either 
𝑚1 < −𝑐1 or   𝑛1 < −𝑐1, respectively, a contradiction to constraint (3). So,  𝑚1 =  𝑛1 = −𝑐1. Finally 
 𝑚2 =  𝑛2 = 𝑐1 using equation (2) and the corresponding values of 𝑚2 and 𝑛2 .  

Therefore,  𝑉2 is a vertex. 

 

 

Suppose (𝑥1, 𝑥2, 𝑚1, 𝑚2) and (𝑦1, 𝑦2, 𝑛1, 𝑛2) are efficient and 

1
2

(𝑥1, 𝑥2, 𝑚1, 𝑚2) +
1
2

(𝑦1, 𝑦2, 𝑛1, 𝑛2) = (0,1, −𝑐1, 𝑐1 ) 

That is  

1
2

𝑥1 +
1
2

𝑦1 = 0 

1
2

𝑥2 +
1
2

𝑥2 = 1 

1
2

𝑚1 +
1
2

𝑛1 = −𝑐1 

1
2

𝑚2 +
1
2

𝑛2 = 𝑐1 

Starting with the second equality, if 𝑥2 < 1 or  𝑦2 < 1 then it would be necessary for either 𝑦2 > 1 or  
𝑥2 > 1, respectively, a contradiction to constraint (1). So  𝑥2 =  𝑦2 = 1.Then,  𝑥1 =  𝑦1 = 0 using 
equation(1). From the third equality, if 𝑚1 > −𝑐1 or  𝑛1 > −𝑐1 it would be necessary for either 
𝑚1 < −𝑐1 or   𝑛1 < −𝑐1, respectively, a contradiction to constraint (3). So,  𝑚1 =  𝑛1 = −𝑐1. Finally 
 𝑚2 =  𝑛2 = 𝑐1 using equation (2) and the corresponding values of 𝑚2 and 𝑛2 .  

Therefore,  𝑉3 is a vertex. 

 

 SubSection 2.2.2:  All Possible EnvyFree Allocations are Convex Combinations 



What must be shown for both of the cases where (𝑥, 𝑚) is a convex combination of either  𝑉1 and 𝑉2 or 
𝑉2 and 𝑉3 is that if (𝑥, 𝑚) is not a convex combination of these vertices then it is not efficient.  

It makes the most sense to view this geometrically in allocation space. 

 

The set of efficient allocations is the borders of the feasible allocations where 𝑥1 = 1 or where 
𝑚1 = −𝑐1. If there were an allocation (𝑦, 𝑛) that did not lie on this border then we know Player One is 
not receiving all of the good and is not as his budget constraint so it would be possible for Player Two to 

transfer ε of the good to Player One, where ε > 0.  

We want to show that this new allocation increases either Player One or Player Two’s  utility and leaves 
the other as least as high as it previously was. 

The transformed utility  for Player One is equivalent to 

𝑢1,𝑦 = (𝑥1 + ε)𝑎1 − 𝑚1 − ε𝑎1 

= 𝑎1𝑥1 − 𝑚1 

=  𝑢1,𝑥 

We want to show that this new allocation increases either Player One or Player Two’s  utility and leaves 
the other as least as high as it previously was. 

 

The transformed utility for Player Two is equivalent to 



 

𝑢2,𝑦=(𝑥2 − ε)𝑎2 + 𝑚1 + ε𝑎1 

(𝑥2 − ε)𝑎2 + 𝑚1 + ε𝑎1 > 𝑥2𝑎2 + 𝑚1 

Since 𝑎1 >  𝑎2, by constraint (3), we know ε𝑎1 > ε𝑎2 therefore 𝑢2,𝑦 > 𝑢2,𝑥. This means 
that the allocation (𝑥, 𝑚) is not efficient as there exists an allocation (𝑥, 𝑚) in which at least one player 
is better off while the other remains at least the same. 

Thus, if (𝑥, 𝑚) is not a convex combination of either   𝑉1 and 𝑉2 or 𝑉2 and 𝑉3 then (𝑥, 𝑚) is not 
efficient. 


